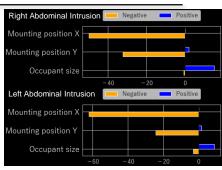


CAE Surrogate Modeling and Optimization with Multi-Sigma[®] -Advancing Safe Vehicle Design for Diverse Occupant Body Sizes

Multi-Sigma[®] constructed a surrogate model from CAE crash simulations to derive optimal safety device configurations while accounting for diverse occupant body sizes.


1. Surrogate modeling for injury prediction using Multi-Sigma®

Using only 14 crash simulation cases, Multi-Sigma[®] successfully created a surrogate model for predicting abdominal injury risk in small-statured adult female and male occupants in suboptimal seating positions. This model demonstrated high accuracy despite limited data.

2. Leveraging factor analysis to highlight key contributors to injury risk Intrusion

Factor analysis showed that a lower and more forward seat belt mounting position reduces the risk of excessive abdominal injury, even in poor posture scenarios. Additionally, small female occupants were shown to have a higher risk of abdominal injury than average male occupants under the same design conditions.

3. Optimizing safety configurations for body size variation

30 100 Multi-Sigma® optimizes design under Abdominal Intrusion (mm) Injury Risk Area 20 constrained inputs. In this case, body type -80 was fixed due to higher abdominal injury 10 risk in small female occupants and seat 60 0 belt position was limited to 0-40 mm. -10 Within these limits, the model identified a 40 design that minimizes injury risk. The red Initial position -20 Optimization 20 Direction area in the figure shows the abdominal -30 Left intrusion zone, clarifying design boundaries. Optimized position 40 -20 -10 -40 -300 10

(Note 1) Data source: Saito, H., Pipkorn, B., and Lubbe, N., "Understanding the Influence of Seat Belt Geometries on Belt-to-Pelvis Angle Can Help Prevent Submarining," SAE Int. J. Trans. Safety 10(2):463-481, 2022, https://doi.org/10.4271/09-10-02-0017. (Note 2) Surrogate model trained with 14 samples, validated on 4 samples

(Note 3) Body types defined as: 0 = average male, 1 = small female (Note 4) Abdominal injury index = max belt intrusion above the ASIS (anterior superior iliac spine)

AlZOTH inc. provides a range of Al services, including Multi-Sigma®, Al consulting, experimental condition optimization support, and contract research and development. Multi-Sigma® is a cloud-based Al software designed for research and development, significantly reducing experimental workload and enabling researchers to discover innovative solutions to real-world challenges with minimal experimental datasets.

https://aizoth.com/en/service/multi-sigma/ info@aizoth.com

© 2025 AIZOTH Inc. All rights reserved. AIZOTH and Multi-Sigma is trademarks of AIZOTH Inc. All other marks are trademarks or registered trademarks of their respective holders.

Right Abdominal Intrusion (mm)